THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics

MATH 2050A Tutorial 7

- 1. For $x \in \mathbb{R}$, the floor of x is defined by $\lfloor x \rfloor := \max\{n \in \mathbb{Z} : n \leq x\}$. Determine the points of continuity of the following functions:
 - (a) $f(x) := \lfloor x \rfloor$,
 - (b) $h(x) := \lfloor \frac{1}{x} \rfloor$.
- 2. Give an example for each of the following:
 - (a) $f : \mathbb{R} \to \mathbb{R}$ continuous only at one point,
 - (b) $f : \mathbb{R} \to \mathbb{R}$ discontinuous everywhere but |f| continuous everywhere,
 - (c) $f : \mathbb{R} \to \mathbb{R}$ continuous on $\mathbb{R} \setminus \mathbb{Q}$ but discontinuous on \mathbb{Q} .
- 3. Let $A \subset \mathbb{R}$ and let $f : A \to \mathbb{R}$ be a continuous at a point $c \in A$. Show that for any $\epsilon > 0$, there exists a neighborhood $V_{\delta}(c)$ of c such that if $x, y \in A \cap V_{\delta}(c)$, then $|f(x) - f(y)| < \epsilon$.
- 4. Let *E* be a non-empty subset of \mathbb{R} . For $x \in \mathbb{R}$, define $f_E(x) = \inf\{|x y| : y \in E\}$. Show that f_E is well-defined and is Lipschitz (hence continuous) on \mathbb{R} .
- 5. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is continuous on \mathbb{R} and that $\lim_{x \to \infty} f(x) = 0$ and $\lim_{x \to \infty} f(x) = 0$. Prove that f is bounded on \mathbb{R} and attains either a maximum or minimum on \mathbb{R} . Give an example to show that both a maximum and a minimum need not be attained.
- 6. (Alternative proof of Location of Roots Theorem) Let I = [a, b], let $f : I \to \mathbb{R}$ be continuous on I, and assume that f(a) < 0, f(b) > 0. Let $W := \{x \in I : f(x) < 0\}$, and let $w := \sup W$. Prove that f(w) = 0.